Exploring the influence of knowledge created with LEAP model in Strategic Environmental Assessment of Estonian energy policy

Piret Kuldna, Kaja Peterson, Reeli Kuhi-Thalfeldt*
Stockholm Environment Institute Tallinn Centre, *Tallinn
University of Technology

3rd European Environmental Evaluators Network Forum 'Linking evaluation findings to enhancing sustainability' 28–29 April 2014 Finnish Environment Institute, Helsinki

Introduction

- Strategic Environmental Assessment (SEA) as means of sustainability (environmental) evaluation
- Contents of the presentation:
 - Context
 - Knowledge brokerage
 - Example of SEA and quantitative modelling in energy sector
 - Methodology
 - Findings and conclusions

Use of models in Impact Assessments

Impact assessments, incl. SEA:

- to get additional information on the issue
- to engage stakeholders

Models, projections:

- for setting environmental / economic, etc. requirements
- for communication and visualisation of "hard facts"

Research question:

How are quantitative model(s) for SEA selected by policy developers and how is the knowledge on modelling communicated?

Knowledge brokerage:

– interactive process between the producers and users of knowledge, so that they can co-produce feasible and research-informed policy options (van Kammen et al. 2006)

Knowledge brokerage strategies

KB strategies (Michaels, 2009):

informing	disseminating research results to policy-makers
consulting	advising on a problem delineated by party seeking counsel
matchmaking	bringing together individuals who can contribute to policy-making and who would not otherwise meet
engaging	involving other parties into discussion which is framed by one party
collaborating	parties jointly frame interaction and discussion of a problem
capacity building	parties jointly frame interaction and discussion of a problem with multiple dimensions + learning

Stages of SEA and modelling, on the example of national energy plan and LEAP

LEAP (Long-range Energy Alternatives Planning System) – a model for energy policy analysis and climate change mitigation assessment

Timeline and methodology

Methods:

Data collection from documents and notes, workshop with policy developers, observations at the meetings of the Energy Plan 2030

Use of LEAP in national energy plans

Policy question in SEA of national energy plan 2020:

- Which electricity production scenario and heat production scenario has the lowest environmental impact?

Ex ante modelling question:

- What will be the future CO₂ and SO₂ emissions of the electricity and heat production scenarios?

Ex post modelling:

- Opportunity for policy learning: workshop with policy developers
- To what extent had the LEAP model results for the Energy Plan 2020 realised?

Ex post modelling results

Actual realisation of emissions:

- In the period 2000-2006: actual CO₂ on average 1.5% higher and SO₂ on average 2.0% higher than modelled in 2009, due to the revised statistical methodology;
- In the period 2007-2010: actual emissions varied much more than model projections, due to different outputs of power plants in these years.

Projections:

 By 2030: ex post model projections were higher than modelled in 2009, due to larger growth in electricity consumption than assumed and largescale electricity export.

Causes of differences:

- Changes in statistics and consumption patterns;
- Changes in energy production and market;
- Changes in political arena

Use of knowledge brokerage strategies in modelling

Factors enhancing the tool use in SEA of a national energy plan

- Policy context:
 - energy policy overarching, cross-sectoral policy
 - legal requirement for SEA of sectoral development plans
- Timing of knowledge brokerage:
 - active role of researchers in communication with policy developers from the start of the policy planning (e.g. face to face meetings)
- Availability of data, experts and resources

Main findings and messages

- Selection of a model for SEA:
 - Minor role: previous SEA
 - Major role: model capabilities to meet the needs and purposes of the new plan, available expertise, available time and budget
 - Flexible decision
- SEA procedure enables step-wise process of science-policy interaction. E.g:
 - Programme of a SEA → an action plan for knowledge exchange;
 - SEA report → a framework for documenting the tool use process;
 - ex post modelling
 cyclic SEA and systematic knowledge exchange between researchers and policy developers.

Thank you!

Linking Impact Assessment Instruments with Sustainability Expertise

The research leading to these results has received funding from the *European Community's* Seventh Framework Programme (FP7/2007-2013) / *grant agreement* n° 243826 – project LIAISE "Linking Impact Assessment Instruments to Sustainability Expertise".

