

#### Environmental Evaluation in the Age of an Uncertain Climate

Prepared for:

Environmental Evaluators' Networking Forum

Prepared by:
Diana Lane and Chuck Herrick
Stratus Consulting
Boulder, CO and Washington, DC
June 13, 2008





Source: IPCC, 2007, as presented by NASA Earth Observatory.



# Ability to project regional impacts has increased greatly in the last 10 years

- Regional studies available from multiple sources (examples):
  - California
    - California Climate Change Center at UC Berkeley http://calclimate.berkeley.edu/research
  - Northeast
    - Northeast Climate Impacts Assessment http://www.northeastclimateimpacts.org/
- Recent Synthesis Report from U.S. Climate Change Science Program (May 28, 2008)
  - The Effects of Climate Change on Agriculture, Land Resources, Water Resources, and Biodiversity in the United States
  - http://www.climatescience.gov/Library/sap/sap4-3/default.php



# What climate change impacts should you worry about?

- Sea-level rise projections for 2100 range from 28 to 150 cm (or more)
  - Storm surges magnify the impacts of sea-level rise
  - Impacts on coastal ecosystems, coastal populations, salt-water intrusion into freshwater systems, barrier islands



# What climate change impacts should you worry about (cont.)?

- Temperature increase and non-linear impacts of temperature increases
  - Decrease in snow and ice-cover
  - Changes in snow melt timing
  - Changes in species distributions
  - Insect outbreaks
- Changes in precipitation absolute amounts and changes in timing and intensity
  - Intensification of drought cycles
  - Increased flooding risks



Source: Stewart et al., 2005, Figure 2b.



## Example of insect outbreaks in just 10 years in Colorado

- Next set of slides shows how insect outbreaks can dramatically change a forest landscape in just 10 years
- Data source: USDA Forest Service aerial survey data

















Fish are near thermal tolerance; habitat not suitable without increased shading

Goal of 50%
increase not
realistic because
of increased stress

**PROCESS** 

Population density and biomass above dam will increase by 50% over pre-intervention levels; age-class analysis will show presence of mature spawning brown trout above dam

habitat will increase population

levels



#### Example: Water-banking in the Southwest

- Action: Create a water bank that guarantees minimum flows
- Intermediate Outcome: Contracts in place with irrigators to return flow to river for flows below target level
- Pathway/process: Minimum flows prevent fish kills during low-flow situations
- Long-term results: Stable population of threatened/ endangered fish species is maintained
- Key evaluation question: Are contracts flexible or adequately robust to address projected changes in water availability and/or variability?

# Example: Water-banking in the Southwest (cont.)

Are contracts to maintain 20 cfs a good investment for the water bank?



#### Example: Water-banking in the Southwest (cont.)

 Superimposing a 15% flow decrease on historical flow data (see Milly et al., 2005)





# Example: Coastal marsh protection along the mid-Atlantic coast

- Action: Protect coastal marsh habitat along the mid-Atlantic coast with purchase and easements
- Intermediate Outcome: Acres protected
- Pathway/process: Protection of coastal marsh maintains important habitat
- Long-term results: Stable populations of fish, invertebrates, birds, and other wildlife
- Key evaluation question: Is protection sufficient for maintaining habitat and wildlife populations in the face of projected sea-level rise?

## Example: Coastal marsh protection along the mid-Atlantic coast



## Example: Coastal marsh protection along the mid-Atlantic coast





#### Conclusions

- Formative evaluations have always considered how future changes in a program's context might affect outcomes
  - Evaluators are good at this kind of thinking
  - Climate change becomes another lens through which one should evaluate long-term program sustainability and success
  - You don't need to become a climate expert, but . . .
  - You do need to think about the climate changes that are most likely to affect outcomes
- This is an area where networking and information sharing will be critical