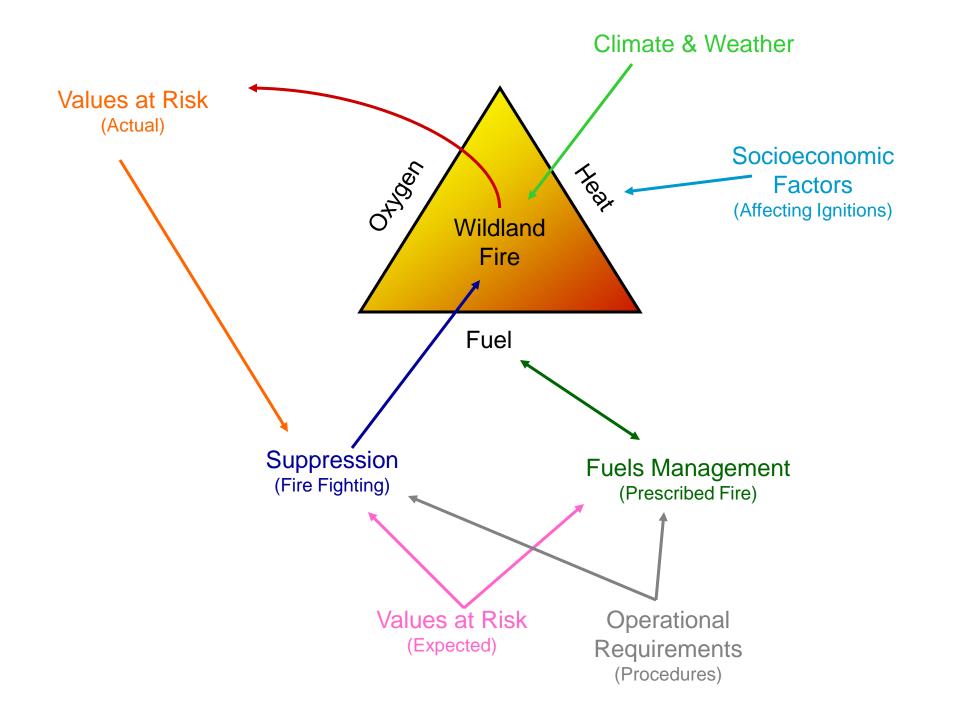
Applying Program Evaluation Methods to Natural Resource Policy: Are Current Wildfire Mitigation Programs Effective?

David T. Butry¹, Subhrendu K. Pattanayak², Erin O. Sills³, and D. Evan Mercer⁴

¹Economist, NIST; ²Fellow, RTI International and Research Associate Professor, North Carolina State University; ³Associate Professor, North Carolina State University; ⁴Research Economist, USDA Forest Service

Talk Outline


- Introduction
 - Wildfire in the US
- Program Evaluation Econometrics
 - Issues of Endogeneity
 - Lack of natural resource applications
- Case Study: NE Florida
 - Rapid response and prescribed burning
 - Propensity score matching model
- Conclusions and Discussion

Wildfire

- Between 1994-2004, over \$830 million annually in wildfire suppression (Federal)
- Over 1.4 million acres are prescribed burned per year (1995-2000 yearly average) (Federal)
- Still wildfire burn more than 5.2 million acres a year (1994-2004)
- Is wildfire management doing enough?
 - Little research quantifies the returns to fire fighting and fuels management

Wildfire Economics

- Understanding tradeoffs
 - Optimal amount of wildfire
 - Optimal mix of wildfire mitigation strategies
- Economic framework
 - Minimize fire damage plus mitigation cost
 - Maximize fire damage averted given mitigation cost
 - Wildfire production function??

Wildfire Management

- Suppression
 - Rapid response
- Prescribed Fire
 - Intentionally set, low intensity fires administered under ideal weather conditions by trained specialists
- Intended effect of management
 - To limit fire spread and intensity

Potential Endogeneity of Wildfire Management

- Fuels Management—selection
 - Factors that influence wildfire behavior also influence placement and intensity of fuels management
 - Some of these factors may be unobserved
- Suppression—simultaneity (and selection)
 - Fire fighting response and effort influenced by wildfire behavior,
 - Wildfire behavior influenced by fire fighting

Program Evaluation Econometrics

- Focuses on establishing causality for endogenous treatment
- Program evaluation isolates the causal effect of a program/treatment
 - Natural experiments
 - Instrumental variables (IV) and control functions
 - Matching (e.g. with propensity scores, or PSM)
- Most commonly applied to social policies
- Little or no application to resource policies

Program Evaluation & Natural Resource Applications

- Edmonds 2002 IV and matching community organizations on fuelwood extraction in Nepal
- Pattanayak 2004 PSM disturbance on forest amenities
- Ferraro et al. 2005 PSM ESA on species recovery
- Somanathan et al. 2005 PSM decentralized management on forest cover

Program Evaluation Econometric Methods

• Instrumental Variables

 Proxy endogenous program/treatment variable with exogenous instrument(s)

Control Functions

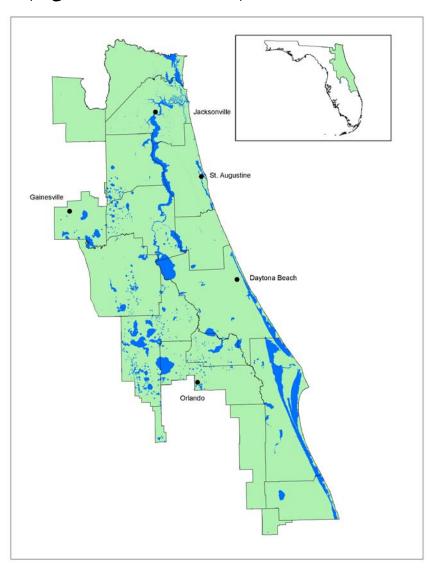
- Controls for endogeneity by modeling treatment (selection)
 as a function of observable data
- Propensity Score Matching
 - Matches treated observations with "like" untreated observations, identified by equivalent propensity scores
 - Propensity score estimated as the probability of treatment using all variables that directly influence treatment and treatment outcome

Propensity Score Matching

- Estimate propensity score
 - Propensity score is the estimated probability of a wildfire receiving management
 - Function of variables that directly affect management and also directly affect wildfire production
- Match wildfires based on their propensity score
 - Matched wildfires have similar probability of being managed
 - Thus, matched wildfires have no underlying differences, except management status
- The difference between matched wildfires is the management effect
 - The average effect (over all managed wildfires) is consistent

Case Study—St. Johns River Water Management District (SJRWMD), Florida

SJRWMD 1996-2001


Wildfire

7490 ignitions

502,754 acres burned

Prescribed Fire

73,099 for hazard reduction

Estimation Objectives

• Quantify the effectiveness of management (treatment) on wildfire behavior (outcome)

Treatment

- Rapid Suppression Response
 A rapid response is when fire report time to fire crew arrival is an hour or less
- Prescribed Fire
 If the landscape had been treated with prescribed fire within the last three years prior to the wildfire

Outcome

- Wildfire behavior
 Measured as intensity-weighted acres burned
- Compare OLS estimates to propensity score matching methods

Data Sources

- FL Dept. of Forestry
 - Wildfire
 - Management
- NOAA & NCDC
 - Climate and Weather
- Census TIGER/Line & NLCD
 - Landscape Characteristics

Data

Wildfire Management (XManagement): rapid suppression response indicator, previous prescribed fire indicator.

Fire Characteristics ($X_{\text{Fire Characteristics}}$): ignition cause, fire year, fire month, use fire indicator, and report time.

Climate and Weather (X_{Climate and Weather}): measures of the Niño3 sea-surface Pacific ocean temperature, Keetch-Byram Drought Index, humidity, spread index, wind speed, and wind direction indicators.

Landscape Characteristics ($X_{Landscape}$): forest density, proportion of landscape in upland forest, vegetation build-up, elevation, slope, fuel type indicators, latitude, longitude, wildfire history, fire district indicator, and county indicators.

Socioeconomic Factors ($\mathbf{Z}_{\text{Socioeconomic}}$): population, percent of landscape in residential, distance to nearest school, hospital, and fire department, and population living in a nursing home.

Ordinary Least Square Model

$$ln(\mathbf{w}) = f_w(\mathbf{X}_{\text{Management}}, \mathbf{X}_{\text{Fire Characteristics}}, \mathbf{X}_{\text{Climate and Weather}}, \mathbf{X}_{\text{Landscape}}, \mathbf{X}_{\text{FireHistory}}, \boldsymbol{\epsilon}_{\text{OLS}})$$

Propensity Score Estimators

Rapid Suppression Response Estimator (probit model)

$$\mathbf{s} = f_s^{psm} \left(\mathbf{X}_{\text{Fire Characteristics}}, \mathbf{X}_{\text{Climate and Weather}}, \mathbf{X}_{\text{Landscape}}, \boldsymbol{\varepsilon}_s^{psm} \right)$$

Prescribed Fire Estimator (probit model)

$$\mathbf{p} = f_p^{psm} \left(\mathbf{X}_{\text{Landscape}}, \mathbf{Z}_{\text{Socioeconomic}}, \mathbf{Z}_{\text{Management}}^p, \mathbf{Z}_{\text{Weather}}, \boldsymbol{\epsilon}_p^{psm} \right)$$

A kernel matching was used to weight the best potential matches

Results—Ordinary Least Squares

- Model highly significant
- $R^2 = 0.13$
- N=7490, K=81
- Suppression parameter significant (5% level) and negative
- Prescribed fire parameter insignificant (5% level)

Results—Propensity Score Matching

- Both propensity score estimator models are highly significant
- "Good matches" exist
- Conditional mean impact negative for both suppression and prescribed fire
- Standard errors generated from bootstrapping the PSM kernel estimator shows significance at 1-5%

Average Effect of Wildfire Management on Wildfire Intensity-Acres (kW-acres/meters)

Wildfire Management	Treated	Control	Treatment Effect
Suppression			
Means	322	723	-401
OLS	337	546	-210
PSM	325	500	-175
Prescribed Fire			
Means	286	366	-80
OLS*	520	546	-26
PSM	286	367	-81
*insignificant			

Summary of Results

- Wildfire management has a significant impact on wildfire behavior
 - Rapid suppression response yields a 35% reduction in wildfire intensity-acres
 - Prescribed fire yields a 22% reduction in wildfire intensity-acres
 - For prescribe fire, OLS does not find statistical relationship impact
- OLS overestimates the effectiveness of suppression compared to PSM estimates

Discussion

- Estimated results suggest huge benefits
 - 1998 one of the worst fire years in SJRWMD
 - Damage approximately \$325 million
 - Estimated reduction in wildfire intensity-acres suggests \$140 million in damages were avoided
- OLS estimates would overvalue wildfire management's effectiveness